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ABSTRACT. Motivated by the recent increase in interest in Toeplitz
determinants of large order, whose elements are moments with respect
to measures, by their connection with the theory of quantum gravity we
have given exact values of the determinants for several large classes of
measures. These classes are related to the continued fraction of Gauss
and its g-extension. We have proven that the g-extension, which is
related to the theory of quantum groups, is unique. In addition we have
extended the work of Szeg6 from measures of finite support to a wide
class of those with infinite support.

I. INTRODUCTION AND SUMMARY

Ambjgrn et al. [1], David [2] and Kazakov et al. [3] proposed that
the integral over the internal geometry of a surface could be discretized
as the integral over randomly triangulated surfaces. When this is done,
then the partition functions of certain models of two-dimensional quan-
tum gravity can be expressed in terms of the free energy of the associ-
ated Hermitian matrix models. These models can frequently be solved
asymptotically in the limit of a large number N of degrees of freedom,
as was pointed out by Brézin et al. [4] and an asymptotic expansion
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in N=! or topologic expansion was given by Bessis el al. [5]. Rest-
ing on this foundation, recently the continuum limit of a sum over the
topologies of two-dimensional surfaces was defined for certain model of
two dimensional gravity and it was reasoned that they correspond to
two dimensional quantum gravity coupled to minimal conformal mat-
ter (Douglas and Shenkar [6], Brézin and Kazakov [7], and Gross and
Migdal [8]). See Zinn-Justin [9] for a recent review of this subject.

The mathematical connection (following Bessis et al. [5]) between
this formulation and the Toeplitz determinant problem is as follows: We

begin with the quantity,
= [+ [ anremevan, (L1)

where M is an element of the N2-dimensional real vector space of N x N
Hermitian matrices, and

te(V(M)) = %tr M) +Z Ip g (M2), (1.2)
p>2

where, depending on the case, v is either finite (V' a polynomial) or
infinite. This real vector space carries a representation of the group of
unitary N x N matrices U such that,

MESUMU. (1.3)

We can restrict det U = 1 as any phase factor cancels out of (1.3). The
Lebesgue measure,

N N
dM = HdMu H d(Re Mz'j) d(Il’l’l Mz‘j) y (1.4)
i=1 1<i<;j
is invariant under the unitary transformations (1.3). Thus (Mehta [10])

using the special case where M is the diagonal matrix A with diagonal
entries \;, we can rewrite (1.1) as

Zn(g) = Qn(2m)~ / /Hd,\A2 exp( ZV ) (1.5)

where,

_ 1. _ \2 - 9
A) =5 +;gpA P 0=y (1.6)
P>
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The quantity 2y is related to the volume of the unitary group and is,
9N AN(N+1)
N
Hp:l p!

Finally, the quantity A(A) is an N X N Van der Monde determinant,

Oy = (1.7)

N
A = T Qui=x) =det || X7 (1.8)
1<i<j
If we take,
dp(r) = eV, (1.9)

then, following Bessis [11] we can re-write the form (1.5) of (1.1) as
proportional to

Zn(g) = - AQ(MIJXI dp(Xi),
/—oo / i=1

1 A - AN 2
o 1 X )\N_l N
:/.../det T T duen). (1.10)
—o0 S ; 1
1 Ay - AV

If we expand one of the determinants and recognize that every term we
get is just a permutation of every other term, then

Ao--e AN
:N!/%./A?Aé..-/\%—l det 1 /\_2 ,\é\f'—l ﬁ du(X;)
- VI
1 Ao--- AN
—N! / . / qet| 2 » ﬁ du(\),
- )\%:—1 )\:% ,\?\&4 =
=N'!det || ai+;j—2 ||= N'D(N), (1.11)
where
a; = /Oo M du(N). (1.12)



which implies that Znx(G) is proportional to an N x N Toeplitz deter-
minant of the moments of a distribution!

There are other cases of interest where the power of A(X) in (1.5)
differs from two. They correspond to the powers 1 and 4. The case of
A(X) arises from considering (1.1) for the case of real symmetric N x N
matrices, which is invariant under the orthogonal group, and the case
A*()\) arises from considering (1.1) as quaternion self-dual matrices or
all self-dual unitary matrices, which are invariant under the symplectic
group (Mehta and Mahoux [12]). The occurrence of these cases is re-
lated to the existence of only three associative division algebras, the real
numbers, the complex numbers and the quaternions. In addition there
is some connection with the study of Coulomb gases, where the A; of
(1.5) are thought of as positions and the exponent of A()) is related to
the interaction strength (Nienhuis [13]).

Another important, relevant case of related study is the work of Szeg6
[14, 15] on the asymptotic behavior for large N of the forms (1.11)
subject to the restriction (1.12), however with a finite length interval
as the support of the measure. The present interest goes beyond the
interests of Szegd in two ways, first we wish to consider measures of
infinite support and second we would like to find asymptotic expansions
in N~! for these properties.

In the second section of this paper, we given some classically known
background material which shows the relation of the Toeplitz determi-
nants to the theory of orthogonal polynomials. We give the results of
Szeg6 [14] on the asymptotic behavior of the Toeplitz determinants and
collect some of the exact results which are known for this behavior from
the normalization integrals of classical families of orthogonal polynomi-
als. Finally we give Selberg’s integral and the limiting case for an infinite
range of integration.

In the third section we discuss the results of the continued fraction
of Gauss and show how the exact behavior of a wide class of Toeplitz
determinants can be computed from known results.

In the fourth section we introduce the g-extension of the continued
fraction of Gauss, that is for ratios of the “basic” hypergeometric func-
tions. These results allow us to compute the exact behavior of an even
wider class of Toeplitz determinants, which permits the asymptotic ex-
pansions in 1/N with N the order of the determinant to be computed
to any desired degree.

In the fifth section we consider whether any further extensions of the
results of sections three and four of the same type are possible. We
replace the g-mapping with a general mapping. We find that the re-
quirement that the resulting generalized hypergeometric functions have



contiguous relations, implies that there are no further generalizations
of this character beyond the “basic” hypergeometric functions. Since
the g-extension is closely related to the theory of quantum groUps, we
speculate that theSe ReSulTS have implications in that theory as well.

In the sixth section, we use the saddle-point method of Brézin et
al. [4] to compute the asymptotic behavior to leading orders of Toeplitz
determinants corresponding to an extensive class of measures with only a
finite range of support, extending the results of Szegé [14] from measures
of finite support to a wide class of those with infinite support.

In the seventh section, we consider some measures of the type that
occur in quantum gravity problems which depend on the order of the
Toeplitz determinants.

II. SOME BACKGROUND

In this section we remind the reader of some relevant known results.
One of the key objects of study of this paper is the asymptotic behavior
of

D(N) = det |aiyj2l;<; j<n (2.1)

as defined by (1.11-12). This object arises in the theory of orthogonal
polynomials to which a great deal of study has been given. Suppose we
are given a measure d¢(u) > 0 supported over some portion of the real

u-axis. We can then define a family of monic, orthogonal polynomials
Yn(u), n=0,1,... such that

/%AW%WM&M=Q n# m, (22)
Y () =Y Ymptt?,  Ymm = 1. (2.3)
v=0

We mean by a monic polynomial one for which the coefficient of its argu-
ment to the highest poser os imotu. as om (2.3). By the direct solution
by Cramer’s rule of the linear algebraic equations implied by (2.2) for
the coefficients v, , and substitution in the normalization integral, we
obtain the relation between the orthogonal polynomials and the Toeplitz
determinants,

Nm) = [ ) dot) = [t ds = ZEEL (o)

where the first equality follows by the orthogonality properties. By
definition D(0) = 1, we may use (2.4) to generate recursively the D(m)
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from the orthogonal polynomial normalization integrals, N(m). It is
interesting to note that N(m) is a minimum with resprect to variations
in ¥, , subject to the condition ¥, , = 1.

The results of Szegé [14] on the asymptotic properties of the nor-
malization constant N(m) are briefly as follows. First, let us take
do(u) = exp(—V(u))du in consentience with the notation of Sec. 1,
but over a finite range a < u < b. Here V(u) is not assumed to be a
polynomial. His results are:

4 2m—+1
mlJl_l’)IlOO [(b—a) N(m)

:2wexp{—%[iv(%(b—a)cos@—l—%(a—l—b)) dH}
V.

2.5)

For large m the normalization constant behaves geometrically. Conse-
quently, we derive easily that,

"{/va(b_“)m. (2.6)

4

We list now a few of the known results, taken for the tables of Morse
and Feshbach [16] for the constant N(m). First, the Gegenbauer poly-
nomials, T (z), are orthogonal over the interval —1 to +1 with the
measure d¢(u) = (1 — u?)?du. The special case f = 0 gives the
Legendre polynomials, the case 3 = n gives the associated Legendre
functions, P7(z) = (1 — 2%)"/2T7(z), and the cases 8 = +1 are the
Tschebyscheff polynomials. The normalization integral of (2.4) is for
the (monic) Gegenbauer polynomials,

N(m) = 22m+28H1T (m 428 + 1)I'(m + 1)['(m + B + 1)?
= (2m+ 26+ )0(2m + 26 + 1)? '

(2.7)

Next the Jacobi polynomials are orthogonal over the interval, 0 to
+1, with the weight function d¢(u) = u®~1(1 — u)?°du. There are
a number of special cases. If a = 28+ 1 and ¢ = 3 + 1 the Jacobi
polynomials are proportional to the Gegenbauer polynomials 72 (1—2z).
The normalization constants for the (monic) Jacobi polynomials is

Fm+1)I'(m+a)l'(m+c)T'(m+a—c+1)

N(m) = (a4 2m)I'(2m + a)?

, (2.8)



where Re(c) > 0, and Re(a — ¢) > —1. By use of Stirling’s asymptotic
expression for the I'-function, and the integral foﬂ Insinfdf = —nln2,
one can show that the exact results (2.7-8) are in agreement with the
asymptotic result (2.5).

On the interval 0 to +0o0 we have the (monic) Laguerre polynomials.
Here the measure is z%¢~ %, and the normalization constants are,

N(m)=T(m+1)I'(a+m+1). (2.9)

The last set of classical orthogonal polynomials on our short list is
the (monic) Hermite polynomials. They are orthogonal over the interval
—00 to 400 with the measure e~

by,

. The normalization result is given

N(m) = ™V (2.10)

2m

In the present context, the point of formulae (2.7-10) is that they give
the exact result for D(m) as a function of m. From them we can, by
technique, deduce the asymptotic results for D(m), including at least
the leading order terms in an asymptotic expansion in m~!. For the
case of (2.10), we are lead, by the classical results to the starting point
of problem (1.1-2) where all the g, = 0. Also see (2.12) below for an
alternate derivation.

Next we recall the results of Selberg’s integral. References here are
Habsieger’s thesis [17] and Mehta [10]. Specifically, Selberg’s [18] integral

1 n
/"'/Htf_l(l—ti)”‘l T -t dty ... dt,
0 =1

1<i<j<n

1:[ (x+72)T(y+72)T((7 + 1)z + 1) (2.11)

MNz+y+(n+j7—1)2)C(z+1)

Note is taken that this 1ntegral corresponds to the Jacobi polynomials
with ¢ = z and @ =  + y — 1, and it is also possible to derive (2.11)
for z =1 from (2.8). Bombieri and Selberg [17], make the substitutions
in (2.11) z =y and 2t; = 1 + ——2-— and let £ — oo which yields the

v/2(z—1)

result,

n

1 too 1 )
e [ 1550) JL oo

i=1 1<i<j<n
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This result could also have been derived for z=1 from (2.10) as noted

above. Again we get an explicit formula for D(n) which lead directly to
its asymptotic behavior.

It is of interest from the point of view of the problem (1.1-2) to write
out the intermediate step between (2.11) and (2.12). It is,

1 \/2(2—1) 1
4r(z—1) /_«/2(2_.1.)./ 2¢/2(z — 1)

X exp [(m . l)iln (1 . %)] I Isi— sj|22£[1 ds;

] zn(n—1)+n

=1 1<i<5<n
1 A fin(n—-1)+in % %
— 4nN/8A (ﬁ) /_; ﬂ/
2V 3
- ’5? = (4S%A)J 2z &
xexpd > | =5 =D gaiNiT [T fsi—siP* ] ds:
=1 7=2 1<i<j<n =1
n—1

TR+ +(n+i—1)2)T(z+1) (2.13)

<
Il

where the substitution z = 1 + [N/(8A)] was made. Now (2.12) results
from (2.13) when the limit N/A — oo is taken. If instead in this form,
we identify N with n and A with the X of (1.6), the results of (2.13)
mimic the form (1.2) with the

gp = _22p—3(_/\)p—1/p, (2'14)

with the interval of integration cut off at :I:% % instead of going to

infinity.

III. CONTINUED FRACTION OF (GAUSS

One of the most productive methods of generating exact formulae for
D(m) in common cases is based on the continued fraction of Gauss. Its
derivation is based on the contiguous relations between the hypergeo-
metric functions. Specifically [15], the identities,

o Fi (0, B+ 157+ 1;2)
2 Fi (e, B;7; )

1
= L (a(’)’—ﬁ)l) 2F1(a+1’/3+13'7+2;1‘), (3.1)
oFi(a, 0+ 1;v + 1;2)
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and, which is really the same as (3.1) when the symmetry between o
and (3 is noted,

oFi(a+ 1,8+ 1,7+ 2;2)
oFi(a, B+ 1,7+ 1;z)

1

:1_((ﬁ+1)(7—a+1) >2F1<a+1,5+2;7+3;w>’
(v + (v +2) 2Fi(a+ 1,8+ 17 +22)

(3.2)

can be substituted alternately to obtain Gauss’s continued fraction,

oFi(a, B+ 1,74+ 1;z) _ 1
F “ Ay :G(CL’): alx ) (33)
2 1(04,5,%53) 1+ a5
L+ asx
1+
14

where we have,

__(a+n)(y-F+n) __(Btn)y—a+tn)
ao2n+1 = — ) agy = — .
(y+2n)(v+2n+1) (v +2n—1)(7 +2n)
(3.4)
If we hypothesize that G(z) of (3.3) is of the form,
1 oo
do(u) :
G(z) = = ! 3.5
@) = [ 2 =S g (35)
7=0
then the Taylor’s series coefficients are of the form
1 .
0= [l dow) (36)
0

the moments of a distribution. We will show presently that this hy-
pothesis is correct. In the theory of continued fractions [19], it is known
that,

_ _D(m-1)E(m) . _D(m+1)E(m—1)
aAgm—1 — D(m)E(m — 1) ’ 2m D(m)E(m) ) (37)

where D(m) is as defined by (2.1), and

E(m) =det || gitj-1 [l1<ij<m - (3.8)



10

The combinations
_ D(m — 1)D(m + 1)
Tm = G2m—1029m = [D(m)]2 9

o oy = BM=DE(m 1)
m = ot CEDE

(3.9)

allow the separation of the D and F determinants to be made directly
from the continued fraction coefficients a,,. If we use the easily com-
puted result, ag = go, then we get simply from (3.9),

D(m + 1) ﬁ (3.10)

and hence,

D(m+1) =gl ﬁ (3.11)

Now from (3.4) and (3.9) we can compute that,

(B+m)y—a+matm=—1)—F+m-1)

m = : 3.12
" (3 + 2m)(7 & 2m — 12(y + 2m — 9) (312)
and that go = 1, so that we get from (3.10),

D(m+1)

i S 3.13

PB+m+ Iy —a+m+1)(a+m)l(y —B+m)l'(y+ 1)I'(v)
LB+ 1) (y—a+ 1)I(a)l'(y — B)T(y + 2m + )T'(y + 2m) ’

and from (3.11)

D(m+1) = (3.14)

ﬁ B+Ek+D)I(y—a+k+ )l(a+k)I(y—B+k)I(y+ HI'(v)
s DB+ DT (y—a+ HI()I(y = B)T(y + 2k + 1)I(y + 2k) ’

As long as
a>07 ﬁ>_17 7>07 7_a>_17 7_ﬁ>0) (315)

all the determinants D(m), E(m) > 0, which is a necessary and sufficient
condition that form (3.6) be valid with d¢(u) > 0, but on an infinite
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range. Since the hypergeometric functions are known [20] to be analytic
in the cut plane 1 < z < oo and positive for 0 < z < 1 if (3.15) holds,
the range of the integral in (3.6) is thereby restricted to that given, and
that form is valid, provided (3.15) holds.

Of special interest for applications to quantum gravity theory are the
cases where the measure is over an infinite range. To construct these
cases, let us use the confluence,

2 Fo(a, By ) = Vli_)rr;o o i (v, B; y; ). (3.16)

Now the cut in the resultant function will be 0 < & < oo. These functions
have the integral representations,

1 o0 pa—le—t gt 1 o0 B—le—t gy
ool =5 | e =g ), e 610

The continued fraction we obtain in this case is,

2F0(a,ﬂ+1;—:v) ~ 1
= G(z) = , 3.18
2Fo(a, B; —x) (*) 1+ nr (318)
1+ e
1 n asx
1+
where
ont1 =a+n, as, =0+n. (3.19)
The normalization factor (3.13) here reduces to,
D 1 r nHr
(m+1) T@B+m+ I (a+m) (3.20)

D(m) LB+ 1) (a) ’

and the result for the determinants is,

6+1+])F(a+j)
H { T } (3.21)

The special case where § = 0 in (3.18) gives us directly the problem
for the Laguerre polynomials (2.9) with a = a — 1, when we remember
that the normalization of the measure is changed by a factor of 1/T'(«)
here from that in section 2. These determinants (and the corresponding
E(m)) are all positive so long as

a>0, B>-1, (3.22)
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so this ratio of confluent hypergeometric functions is of the form (3.5)
with the range of integration 0 to oo, provide that (3.22) holds.
According to Stieltjes inversion formula [15] the integrated measure

¢(u) is given by,

d(u) — o(v) = 1 lim uIm{G [—(w - ie)_l}} d_w,

T e—0 v

(3.23)

w
where ¢(00) — ¢(0) = go. The integral representations (3.17) can be

used to deduce the function ¢ for this case, which will be non-negative
definite, again provided (3.22) holds.

IV. THE ¢g-EXTENSION OF THE CONTINUED FRACTION OF (GAUSS

The necessary extension for this section is that of the hypergeometric
functions to the so-called basic hypergeometric functions [21, 22|, or the
g-extension. The series expansion for the hypergeometric functions is,

fo! aola+1 +1 a)n(B)n
B et DBEY L (@)u(b)

P i) = e e+ ) SINCI
(4.1)

where

(a)p=ala+1)---(a+n—-1), n>1
(a)o = 1. (4.2)

The basis of the identities in the (3.1-2) on which the results of the
previous section were based are the contiguous relations, e.g.,

2 F1(a, 857, 2) —2 Fi(a, B+ 1,7+ 152)

= %x2ﬁ’l(a—|—l,ﬁ+l;"/+2;$), (4.3)

as can be seen by use of the series expansion (4.1) and term by term

manipulation in the region of convergence (|z| < 1). In order to make

the g-extension of this identity, we introduce the g-version of numbers,
1—¢q°

[alg = 1—q° gi_%[a]q =a. (4.4)

In terms of this notation, the definition of the g-extension of the hyper-
geometric functions, which goes back at least to Heine [23], is,

21 (o, B y2) = 1+ RZ::I Ww”, (4.5)

q)n\[Y]g)n
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where now,
([alg)n = lalgla+1]g---[a+n =1y, n=1
(lalg)o = 1. (4.6)

The contiguous relation (4.3) extends to
2F{7 (0, B;72) =2 F1¥ (@, B+ 157 + L)

_ [elg([v]q = [Blg)
[(Yla[y + 1lq

which gives the required identity, as can again be seen by use of the
series expansion (4.5) and term by term manipulation in the region of
convergence. As one follows through the algebra involved in these ma-
nipulations, one finds that the property,

[2]qly + 2]q — [z + 2]q[ylq = ¢¥[2]q[z — ylg, (4.8)

is, by itself, sufficient to obtain the contiguous relation (4.7). A through
investigation of necessary and sufficient conditions for the extension of
hypergeometric functions which retain the contiguous relations will be
given in the next section.

If we now follow the analysis of the previous section with the coeffi-
cient in (4.7) replacing appropriately that in (3.1), we may derive the
continued fraction,

2o\ (a+1,8+1;7+2;2), (47)

(9) ; ;
2ﬂ%f+L7+L”;G@@ﬁ= e (49)
o1 (v, B;v; ) 1+ as
1 + 1 + asx
1+

where we have,
_ [ + n]q([7 + 2n]q — [B + nly)
[v + 2n]q[y + 2n + 1], ’
, = Binl(y+2n -1, —fatn—1])
" [v + 2n — 1]g[y + 2n], ' (4.10)

ao2n41 =

At this point it is of interest to take note of the analytic nature of the
g-extension of the hypergeometric functions. In the limit of large n, we
deduce from (4.10) that

- —y—1- - —y—

Aopy1 X —q¢ 77T = 0, ag, X —¢P " 0, lg| > 1,
- - —1

ao2n4+1 = _qﬂ—i—n — 07 asy X _qa+n — 03 |q| < 17

n— oo n— oo

(4.11)
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By a theorem of Jones and Thron [24] these continued fractions (|q| # 1)
converge to meromorphic functions of z and are regular at x = 0. Nev-
ertheless we know that when ¢ — 1 we get a function with a branch cut,
1 <z < o0. If g is a root of unity other than ¢ = 1, a periodic continued
fraction results and the exact solution can be found for G(q)(m).

In order to deduce the behavior of the Toeplitz determinants, as at
(3.9 and 12) we compute,

_ B +m]q([7 + 2m — l]q —[a+m— l]q)[a—l—m - 1]q
" [y +2m — 2]y + 2m — 1]2[y + 2m],
X ((y+2m—2];—[B+m—1],). (4.12)

In order to conveniently express the result for the determinants, if is use-
ful next to introduce the g-extension of the I'-function. This extension
is customarily given in terms of infinite products. Let us define,

o H (1—2¢%), |2| <1, |q <1, (4.13)

where it is easy to show that for the given range of variable that the
infinite product converges. We may now define,

10)(g) = (Q)C"’((;;j)m_l | (4.14)

Some properties of this definition are,
I (y+n) = H[y+J] r@(y), @) =1,
7=0

rd(n41)= H[J]q — nl. (4.15)
_)

Thus we may write
_ q(a+,3—1)m+m(m+1)

LB +m+1DID(y—a+m+ 1D (a+m)
B+ 1)ra(y —a+ 1) (a)
D@y — 8 +m)I0(y + Yr@(y)
D@ (y — BT (y + 2m + LT (y + 2m)’

(4.16)
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where use was made of the identity,

[z]q — [ylg = ¢¥[z — ylq, (4.17)

to write the result in this factored form. The value for the Toeplitz
determinant is

D(m+1) = g2 (a+B=Dm(mt1)+gm(m+1)(m+2)

y ﬁ IHM9B+k+1DID(y—a+k+ 1D (a+ k)
@3 + 1IN (y — a+ 1)ID(a)

P& (y — 6+ KL (y + DT ()
(@) (y — B)0D (y + 2k 4 1)[(D(y + 2k)

k=1

(4.18)

We can also consider the g-extension of the confluent hypergeometric
function. Here we have, for

2B (a,Brz) =1+ Z ([2]q)n [1] ([odo)n(Bla)n (4.19)

the corresponding continued fraction,

F(Q) 1: R 1
2fo (0S4 1T) _ piag) = L (420)
(9) : ax
2F1 (a,ﬁ,m) 1+ as
1+ 1 + agx
1+
with
agnt1 = —¢" " a +nlg,  asn = —¢*t"B + ), (4.21)
In this case, the asymptotic properties of the coefficients are
qa+,6’+2n q,6’—|—a—|—2n—1
Agn41 X o1 W, 000 Gan X o1 s O lq| > 1,
qﬁ_|_n at+n—1
Aopny1 X — — 0, asyp X — — O, |Q| < 1,
1— q n—oo 1— q n—oo (4‘22)

In the case |g| < 1 we have as before the conclusion that é(q)(m) is a
meromorphic function which is regular at the origin. In the case |g| > 1,
however we have divergent coeflicients in the continued fraction reflecting
the divergent Taylor series.
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V. GENERALIZED HYPERGEOMETRIC FUNCTIONS OR
THE UNIQUENESS OF THE ¢-EXTENSION

In this section we consider in detail the question of whether there
are further generalizations of the hypergeometric function, besides the
g-extension, which preserve the existence of contiguous relations. We
will find that such is not the case. It is known [25] that the g-extension
of the hypergeometric function has a deep and intimate connection with
the theory of quantum groups, and as such our results have, we feel,
important implications there as well but we will not explore them in
this paper. The theory of quantum groups in turn arose from the study
of solvable models in statistical mechanics, and has now been shown to
have applications in a number of other areas.

We, in the spirit of the g-extension replace each number x by a map-
ping of the complex plane, T'(z), so that the generalization we consider

becomes,
v o T(@T(B) | T(a)T(a+)TBTB+1) ,
Ao e =1t o Y T T s DT
ST+ NTB+I) .
B S O A R o)

We suppose that

(5.3)

1 [T(5+n) T(ﬁ)]: C(8,7)

T(n) |[T(y+n) T(H)] TH+nr)T()

where C(f3,7) is independent of n so that we may write,

oFT (0, B+ Ly + Lz) — F{ (@, B;7; )
T()C(B,7)

~ I TMT(+1) 2P (a+ 1,6+ 1y +22).  (54)
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As in the preceding sections we would then get,

oFT (o, B+ 1,7 + 1;2) 1
= R(a, B;7;2) = , (5.5)
2 F (a, B;7; ) 1+ “”22
1 + asx
1+
1+
where

S T(a+n)C(B+n,7+2n)

T(y+2n)T(y+2n+1)
T(B+n+1)Cla+n,v+2n+1) >0
T(y+2n+1)T(y+2n+2) ’ -

Aon+42 = —

(5.6)

If we use the case T'(z) = z, we obtain, C(3,7) = v — 8 which leads to
(3.4) directly. As a second example, if we select T'(x) = [z], as defined
at (4.4) then we get C(3,7) = [y]q— 6], and (4.10) follows directly from
(5.6).

Our condition (5.3) can be rewritten as,

T(2)T(y + 2) - T(y)T(z + z) = Cly, 2)T(2), (5.7)

which is to be compared with (4.8) for the g-extension case. We will
suppose in what follows that T" does not vanish identically. If we set
z =01in (5.7), then we get that C(y,x)T(0) = 0. If C' does not vanish
identically, then we conclude that,

T(0) = 0. (5.8)
On the other hand if C'= 0, then (5.7) would imply that

T(z + 2) _ T(y + 2)
T'(z) T(y)

where @ is independent of  and y. One solution in this case is T'(z) =
AB?. The case C = 0 means by (5.6) that the continued fraction R of
(5.5) is just R = 1, the trivial non-interesting case. Therefore we will
hence forth treat just the case C' Z 0.

It is easy to see that C(z,y) = —C(y, ) from (5.7). If we set z =0
in (1), then we conclude that,

T(2)T(y + z) = T(y)T(z + 2), or

= Q(Z)? (5'9)

~T(y)T(z) = C(y,0)T(2), = C(y,0)=-T(y), (5.10)
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as we have assumed that T(z) # 0. Next set z = —y in (5.7). We get,
Cly,z)T(—y) =T(2)T(0) = T(y)T(z —y) = —T(y)T(x —y), (5.11)
by (5.8). If we multiply (5.7) by T(—y) and substitute in (5.11) we have,
T(x)T(y+2)T(—y)=T(z+2)T(y)T(—y)+T(y)T(z—y)T(z) = 0, (5.12)

which involves only the function 7" and not the auxiliary function C,
which is given in terms of T' (provided T'(—y) # 0), by

C(y7 :L‘) =

T(z—y). (5.13)

Thus (5.7) is equivalent to two cases (i) (5.9) which is of no interest,
and (5.12), with the auxiliary function normally given by (5.13). It is
convenient to re-write by a simple linear change of variables (5.12) in
the more symmetrical, equivalent form,

T(z—2)T(y)T(2—y)—T(x)T(y—2)T(z—y)+T(y—2)T(z—y)T(z) = 0.

(5.14)

The next step is the reduction of (5.14). Note that the substitution

z = 0 once again yields (5.8). To accomplish the reduction, we first set
x = 0, which yields,

T(y) ) ( T(z—y)) T(z)
_ _ = — , 5.15
(~r) (r6=5) =79 19
provided that none of the denominators vanish. In turn we may write
(5.15) as

9(z +y) = g(z)g(y), (5.16)
where we define,
g(z) = —ng(:ci) (5.17)

We recognize (5.16) as the Cauchy multiplicative equation. The only
locally bounded solutionns of this equation are,

9(z) = ¢%, (5.18)

for some complex number gq.
More generally from here on we will assume that g(z) satisfies (5.16)
but is not necessarily bounded. g(z() can never vanish because we would
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then have g(zy + y) = 0Vy and hence g(z) = 0 by (5.16). Thus as
g(0) = g(0)?, it must be that g(0) = 1. Let y(z) be an arbitrary

solution of (5.16). Then, if T'(x) satisfies (5.14) with g(x) given by
(5.17), it follows that T'(x) = T'(z)y(z) also satisfies (5.14), and

i) =~ oy oa), (5.19)
since v(2z)y(—z) = vy(z). If we select,
1(22) = g(=2) = (5.20)

then we see that T(x) satisfies (5.14) with §(z) = 1. From this result
we conclude by division of (5.14) by T'(z — y), that the general solution
of (5.14) is of the form,

T(2) = g(a)t(a), (521)
where g(z) satisfies (5.16) and ¢(z) satisfies the equation,
e — 2)(y) — @)Uy — ) = =)tz — ), (5.22)

for the particular case g =1, i.e., t(y) = —t(—y).

Now it remains to analyze the solutions of (5.22). In particular (5.22)
again implies from the z = 0 case that ¢(0) = 0, and the g restriction
that t(z) is odd follows by an interchange of z and y. Using this anti-
symmetry, we can rewrite (5.22) in the form,

He)ily — 2) + )tz — o) +t()(a —y) =0,  (5.23)

which is invariant under the circular permutation (z,y,z2) — (z,z,y).
With the condition (5.8), then if we put z = y in (5.23), we can conclude
directly from (5.23) that t(z) is odd so we can go back from (5.23)
to (5.22), so the two equations are equivalent. In fact, ¢(0) # 0 is
inconsistent with (5.23). This result can be seen by setting s = (0),
then (5.23) for the case z = y becomes,

—st(z) =t(zx){t(z—2)+t(z—x)}, —st(z)=t(z){t(z—2)+t(z—2x)},

(5.24)
where the second equation is the z, z interchange of the first. If we
multiply the equations by ¢(z) and t(z) respectively, subtract and divide
by s, assumed non-zero, we get,

[t(2)]* = [t()]*. (5.25)
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This result implies that ¢(z) is a constant, up to a sign, and thus is of
the form t(z) = Ce(z), where ¢(z) = £1. Thus, we would be able to
rewrite (5.23) as,

e(@)ely — ) + e(y)e(z—2) + e()ele—y) =0, (5.26)

which is obviously impossible. Thus we have a proof by contradiction
that ¢£(0) = 0 and can conclude that (5.22) and (5.23) are equivalent.

The next step is to analyze the solutions of (5.23). It is worthwhile to
notice, and it will serve as a guide to our analysis, that ¢(z) = A sinh(Bz)
satisfies (5.23), as can be seen through the use of standard hyperbolic
function identities! In general we can deduce from (5.23), by letting
y = —x and using the anti-symmetry property that

t(22)t(z) = t(z){t(x + 2) + t(z — x)}, (5.27)
If we now define,
U(z) = ;(f(g (5.28)

which would be the normalized cosh if ¢(z) is the unnormalized sinh,
then we get the result from (5.27),

_tlztz)+Ht(z—x)
Ula) = %)

(5.29)

Note is made that as ¢ is odd, by (5.28) U is even. We can rewrite (5.29)
in two ways related by an z-z interchange as,

t(z+z) =2t(2)U(z)—t(z—z), t(z+z)=2t(z)U(z)—t(x—2). (5.30)

If we add these two equations and use the anti-symmetry property, then
we get,

t(z+z) =t(z)U(z) + t(z)U(z), (5.31)

which is the direct analogue of the addition formula for the sinh.
Now let us consider the quantity,

Uz +y) —U()U(y) U2’ +y) —U)U(y)

D = 32
& ) .
If we use (5.29) then we can write,
tlx+z' +y)+tla' —x—vy)
U =
(z+y) 20
t ! t(x — ' —
U 4y) = Tyt —y) (5.33)

2t(x) ’
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which when substituted into (5.32) gives,

po e —z—y) —t(z -2’ —y) - 2U(y)[U(2)i(z") - U(2")t(2)]
2t(z')t(z) '

(5.34)
By the addition formula (5.31) the square bracket term reduces to t(z —
z'), so that we get,

tx' —z—y)—t(zx—2a' —y) —20(y)t(a’' — 32)

b= 2t(z')t(z)

(5.35)

Now if we use (5.29) to express

t(z' —x+y)+t(a —z—vy)
2t(z' — ) ’

Uly) = (5.36)

and the anti-symmetry property of ¢, we find that D = 0. From this we

conclude that
Uz +y) —U(z)U(y)
t(z)t(y)

is independent of z, and hence by symmetry, independent of y as well.
Therefore there exists a constant K such that

(5.37)

Uz +y) =U(z)U(y) + Kt(z)i(y), (5.38)

which is the analogue of the cosh addition formula!

We are now ready to deduce the general solution of the reduced equa-
tion (5.23). First suppose that ¢ is odd and fulfills (5.23) and that U is
given from it by (5.28) so that (5.31) and (5.38) hold. The first case is
K =0. ThenU(z+y) =U(z)U(y) = U(x —y), so that U is a constant.
Thus

Ha +y) = Ult(z) + (), (5.39)

which implies that U = 1 from the case y = 0, and so for this case,
t(z +y) = t(z) +t(y), (5.40)

which is the additive Cauchy equation. Therefore any solution of the
additive Cauchy equation satisfies (5.23) as can be verified by direct
substitution of (5.40) into (5.23).

In the second case, K is real and positive. If we scale 7 (z) = vV Kt(z),
then (5.31) and (5.38) become,

T(z+y)=U(z)T(y) +U(y)T (=),
Uz +y)=U(z)U(y) + T ()T (y), (5.41)
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and if we take,

f(z) =T(z) + U(z), (5.42)
we verify from (5.41) that

flz+y) = f(=)f(y), (5.43)

which is again the Cauchy multiplicative equation. Since 7 is odd and
U is even, we have

2U(z) = f(z) + f(—=x). (5.44)

t(z) = C(f(z) — f(—=)), (5.45)

where f is an arbitrary solution of the Cauchy multiplicative equation
and C' is an arbitrary constant.

The third case is when K is real and negative, and we just repeat the
analysis of the second case, but in a manner analogous to the case of
circular functions, instead of hyperbolic functions. The only distinction
between these two cases occurs if there are reality conditions on t. Fi-
nally the fourth case is when K is complex, and a complex square root
results in the definition of 7.

Summarizing, then the solution of the reduced equation (5.23) is

t(z) = C1(x)
or (5.46)
t(z) = Clf(z) — f(—=)]

where 7 is a solution of the Cauchy additive equation (5.40), and f is

a solution of the Cauchy multiplicative equation, (5.43). The general
solution of the original equation (5.12) is

T(z) = Ch(z)1(z), (5.47)
T(z) = Ch(z)[f(z) — f(—=)], (5.48)

where 7 is an arbitrary solution of (5.40) and h and f are arbitrary
solutions of (5.43). The auxiliary function C(z,y) can be computed
from the solution T of (5.47-8) by means of (5.13) as remarked above.
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It is a classical result by Cauchy [26, 27] that the only locally bounded
solutions of (5.40) and (5.43) are Cz and ¢ respectively. (Bounded-
ness on any arbitrarily small open set is sufficient.) In this case the
only generalization of the hypergeometric functions that occur are just
argument-scaled versions of g-extension discussed in section 4. That this
is so can be seen by noticing that the case (5.47) implies

oFL (o, B;7v; %) = o Fi(a, B; ;TP ), (5.49)

and the case (5.48) implies,

oFT (a,B;7v;2) = o F* (a, B;7; (4g)° P a). (5.50)

Let us now investigate the consequences of choosing the irregular
solutions of the Cauchy equations. For (5.47) we have as the required
quantities,

7(n) = n7(1) = n7, h(n) = [h(1)]™ = A",
T(a+n)=7(a) +nr(l) =a+n7r, 7(b+n)=p0+nt,

ha+n) = h(@[h(L)]" = Ak",  r(c+n)=y+nr, OOV
h(b+n) = Bh™, h(c+n) = Ch™.
The general term in the series (5.1) becomes,
A\t E(EH ) () 2 (241) (240 -1)
(c) 1(2+1)---(Z4+n—-1)n! o
(5.52)
which we identify as the general term of 3 F as given by (4.1) where,
AB
Z ——2, ou—)g, ﬁHé, and'yl—>1. (5.53)
C T T T

For the case (5.48), the result of the factor h is just to rescale z as in
(5.53), so with out loss of generality, we can treat the case h = 1. Now
for this case the required quantities are,

flat+n)=af", f(b+n)=06f", flc+n)=~f" [f=F(),

_ n_i_l —na2 2n n)=f " 2n
Tlatn) =of" = o = S 1), T =g
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The general term of (5.1) becomes,

(l)" (0® —1)(a?f? = 1)--- (o2 /271 — 1)

af) (V=1 -1) - (2207 —1)

(BB - (e 1)
(=D =1)-- ("= 1) '

X

(5.55)

If we set f2 =g, and a® = ¢, B2 = ¢B, 42 = ¢* then (5.55) becomes,

(1—gH(1 =g ---(1—gM
(1—¢%) (1 —q%t) - (1 —q“tnT)
(

(1-¢")A =gt (1= ¢Pt ") (y2\"
* (1-q)(1—¢?)---(1—q") (aﬁ)’ (5.56)

which is the ordinary g-extension hypergeometric function of section
4 with suitably modified parameters. Hence neither regular nor the
irregular solutions of Cauchy’s equations bring any new functions and
we therefore conclude that the g-extension is unique in the sense that the
requirement that there continue to be contiguous relations so restricts
the mapping T'(z) that no further cases are possible!

As a final remark in this section, we note that in (5.7) we only really
needed the case z integer and it is unclear to us whether the assumption
that (5.7) is satisfied for any z is or is not superfluous.

VI. LEADING ORDER ASYMPTOTIC BEHAVIOR
BY THE SADDLE POINT METHOD

In this section we will compute the asymptotic behavior of the Toeplitz
form D(N) of (1.11) in the form D(N) = Zx(g)/N! as given by (1.10).
We will basically use the saddle-point method of Brézin et al. [4]. We
begin with

- /_:/N(A)ljjl dp(Xs), (6.1)

where we treat now the more general case of A7 instead of A2, We
differentiate (6.1) with respect to the A; (1.8) and obtain the saddle
point equations,

V'(\) =0, (6.2)
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where note is taken that the first term in this equation is of the order of
N. Let us now suppose that asymptotically as A — oo,

V(X)) < AN, (6.3)
If we organize the A; such that,

A; = NP _ 6.4
> (), = N (6.4)

I

then if we select,

1

P=1Tra

(6.5)

we may write the saddle point equations (6.2) in the limit as N — oo

as,

@) =1 f =% (6.6)

where f is the principal value integral. The next step is to introduce
the function,

X —u) 20, (6.7)

by construction. In addition, by construction, we must have the nor-
malization condition,

/ A= 1. (6.8)

—2a

We may rewrite (6.6) as an equation for u()\),

2a

d

ANY = 'y][ u/iﬂ) ,u) for —2a <\ < 2a, (6.9)
—2a —H

where for a > 0, we must have finite support for u(y) or the equation
would be inconsistent for large A.
Let us now introduce, for complex A, the analytic function,

F(\) = /2a ulp) dp (6.10)

—2a A—,Lt

A
— — A% Finmu(A) as A = the interval, —2a < X < 2a.
Y

We see directly that F(\) has the following properties,
(i) It is analytic in the cut complex A-plane, (—2a < A < 2a).
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(i) It behaves like 1/ as A — oo by (6.8).

(iii) It is real for A real and |A| > 2a.
These conditions suffice to insure a unique function F'. This uniqueness
is a consequence of the fact that the real part of F(\) is uniquely deter-
mined. It is a standard result of potential theory that it is unique because
it satisfies Laplace’s equation with the boundary conditions (6.10) in the
region of analyticity given by (i) above and vanishes at infinity by (ii).
The imaginary part is then determined, up to a constant, from the real
part by the solution of the Cauchy-Riemann equations. That constant
is determined by condition (iii) above, which completes the assurance of
uniqueness.

In the special case that « is an odd integer the solution can be given
in closed form. Let us try

1
A 40272
F(A) == (Aa . {X"_l [1 . %} } Va2 - 4a2) , (6.11)
v

where { } denotes the polynomial part in A when the quantity inside has
been expanded in a power series in inverse powers of A\. The value of
a is determined by equating the coefficient of A~! to « as required by
(6.8-9). These equations are straightforward to derive and they are,

(a=1) 24a®> =7, (a=3) 64a*=7v, (a=5) 204a° =7,
1

. (1(;i 1)>A(—4a2)%(a+1) =y, (6.12)

2

The function F' so determined satisfies all the required conditions and
so gives the solution to (6.9). It is, by comparison of (6.11) with (6.10),

Ty

A 4a?] 7%
u(h) = = {)\0‘_1 [1 = i} } Va2 =22, —2a<A<2a (6.13)

where a is given by (6.12) and as above { } denotes the polynomial part.
The value of the integrand at the saddle-point, which gives the leading
order in the asymptotic behavior of the Toeplitz determinant, is

N N
exp [v Y In|hi— X =Y V(M) (6.14)
1<i<j i=1
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which in the limit as NV — co becomes,

< exp [NQ( ’yoin—l—]\i / / In |A(z) — A(y)|dz dy
" s

| N
= exp [N2< T / / In |A — plu(N)u(p) dXdp

A /_2a )\"‘+1u(/\)d/\)]. (6.15)

a+1

This equation can be reduced by integrating the saddle-point equation
(6.9) with respect to A from 0 to A, and by use of the normalization
condition (6.8) to give,

yIln N
a+1

T /_ (wn Al- a%lx*“) u(\) dAH, (6.16)

to leading order in N. The factor of N! comes from the N! identically
valued saddle-points due to permutations of the A;. The result (6.16)
for the asymptotic behavior of the Toeplitz determinant (y = 2) and
its generalizations for other exponents of A is also valid for all values
of a > —1, A > 0 and not just when a an odd integer. In the cases
where a is not an odd integer, we have not given an explicit solution for
u(A), but as remarked above it is determined by (6.9) and the conditions
(i)-(iii). These results represent an extension of the work of Szegé [14] to
a class of measures with infinite instead of finite support, and following
the analysis of section 2, also provide the asymptotic behavior of the
normalization constants for the orthogonal polynomials with respect to
these measures. The case a = 1, v = 2 discussed above corresponds to
the results (2.10) for the Hermite polynomials, and the leading behavior,
exp[%N 21n N] is correctly given. The next order behavior is of the order
exp[K N?] for a constant K and it also can be obtained from (6.16) and
agrees with that derived from (2.10).

Z4(N) < Nlexp [%N2{

VII. AsyMPTOTIC BEHAVIOR FOR MEASURES
OF THE QUANTUM GRAVITY TYPE

In the problem we introduced in section 1 the measure had the prop-
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erty (1.6) that it depended on the order of the determinant being con-
sidered. In this case, the analysis of the previous section is slightly
modified. Specifically, we need to treat potentials of the structure,

V(A) = Nv (\/%) , (7.1)

where the N dependence is now explicit. If we now investigate the
asymptotic behavior of (6.1), again following the method of Brézin et
al., [4] but now with the potential of the structure (7.1) instead of (6.3),
we make the choice 8 = 1 instead of (6.5) and obtain,

V0D =1 5 Sm (7.2)

instead of (6.6). By means of exactly parallel analysis to that of the
previous section, we derive the equation,

2a

d

v'(A) = 'y][ u}(\,u) #, for —2a < X < 2a, (7.3)
—2a — U

in place of (6.9) but still subject to the conditions (i)-(iii) of section 6.
The asymptotic behavior is now given in terms of the u(\) of (7.1) by

_ 1
Z4(N) < Nlexp [%N2{§’)/IIIN

2a
+ / (yIn|A] — v(X)) u(A) d)\}] , (7.4)
—2a
to leading order in .
For the special case,
v(A) = 1N + gAY, (7.5)
the methods are known [5, 12] to compute the leading terms in the

asymptotic expansion in powers of 1/N of the exact solution of the
quantity,

]

1

B @)+, (7.6)

1 N\ _ () LIC)
e (Zai)) < B0+ B0+
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for the values v = 1,2,4, a number of the leading terms are known
explicitly. They are, for v = 2,

EP(g) = &(f—1)(9— fo) — L1n fo,

EP(g) =0,
L (1 —2)dz
P =3 + 5 gy~ 1291 06”0 (7.7)
with
VI+48g—1
falo) = 5 — (7.8)

For v = 1 the series terms are,
B (g) = &(H -1 f) — i fi,

1
E?)(g):ilnfﬁé(l—fl)—gfo InF(z,lg)de,  (7.9)

with

filg) = —Jizg_l, (7.10)

and

 +8gp” — \/(x + 24gp%)(x — 8gp*)

where

v1+96gr —1
p= .

7.12
134 (7.12)

Lastly, for the case v = 4, the results are,

EM(g) = L(f2—1)(9— fa) —In fa,

(7.13)
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with

V14969 —1

f4(g) = 489 )

(7.14)

and F(z,g) as given by (7.11).

There are some interesting relations between these results that be-
come more evident in terms of the following inequality which we derive.
For this purpose it is useful to write V() of (1.6) as

V(A)=L1X +gW(N), (7.15)

where as we will work at fixed N in what follows, no explicit assumption
is made now about the N dependence of the coefficients of W, however
we will considered that it is asymptotically positive and tends to infinity
as A — +00. We will use the notation k=1 + &' ~! = 1, with necessarily
k > 1. Thus we may write (6.1) as

720 (g) = /_O; /m(A) ﬁexp

=1

< {./—O:O/A‘Yk()\) exp {_/\; _ kQW(Ai)] d)‘i}l/k

=1

- N 2 1/k'
X /_Oo/ exp [—?] dX;
=1
1/k

= (2m) 5 [ 27" (ko) (a6

A7 A7
[—% — gW(Ai)} exp {— Qk'] dX;,

where the inequality follows from the Holder inequality for integrals.
Alternately we can write the result (7.16) as

_(k=1)N

Z39() 2 (om) = [ 29 a10)] (117a)
}1/k

(k—1)N

Z(™) (g) < (2m) 7 [Z](J)(kg)

, (7.17b)

which gives a lower bound (accurate of course to all orders in 1/N) for
any larger value of v in terms of a reference case, and an upper bound
for any smaller value of . If the bound (7.17) were exactly true then

the coefficients E§7) (g9) would have the property,

B (g) = kE{(g/k). (7.18)
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If we compare with the exactly known results, since u()) depends only
on A/v or g/v respectively, we see to that (6.16) and (7.4) have this
property. Hence this inequality has the property that it is exactly satis-
fied as an equality to the same leading order in 1/N for which (6.16) and
(7.4) are valid. We find that this property is good through the first two
orders in 1/N, namely the orders N?In N and N2. Comparison with the

exact solutions (7.7-14) shows that this property is valid for E(()7)(g) but

fails for Efv) (g), that is, at order N which is the next order. Neverthe-
less the inequalities (7.17) applied with v = 2 as the reference case do

correctly indicate the opposite signs found in (7.9) and (7.13) for Efl)

and E£4). Thus we conclude that, in line with the arguments in section
6 and the beginning of this section, that as the validity of the saddle-
point method is sufficient to insure that our inequalities are equalities,
because then the neighborhood of only one point (or here N! symmet-
rical points) is all that contributes to the integral, and the inequalities
are constructed so that the value of that integrand is preserved, we see
that even in cases where we do not have the explicit solution, we still
have the relationship between the results for different values of v given
by the rigorous inequalities, and that they are saturated at the first two
orders in 1/N.
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